
Program size, Possible Optimisations and Command Ti ming

1.0 Introduction

PICAXE microcontroller users often seek information about the timing of various BASIC program
commands within the PICAXE system.

The PICAXE microcontrollers do not operate with machine code or assembler, but instead, use a
BASIC interpreter which is permanently installed in the PIC chip. Due to the methods use to store
the users BASIC program within the PICAXE chip, the time to perform a given command is
somewhat variable and for the same PICAXE clock (resonator) speed can vary between the
various PICAXE chips.

The following information is a collection of data based upon interpretation between PICAXE
manuals and the relevant Microchip PIC datasheets, measurements undertaken by the author
(Westaust55) and information previously provided by forum members (Technical, hippy and
BeanieBots).

2.0 PICAXE program, data and variable storage

All PICAXE chips incorporate a Bootstrap program and BASIC interpreter, collectively referred to
as the firmware, which are permanently held in Flash memory in the PIC chip. The Bootstrap
program is used to load the PICAXE users BASIC program from the Programming Editor into the
PICAXE chip.

The “M” series PICAXE chips only have sufficient flash memory (2048 bytes) for the firmware and
utilise the limited EEPROM memory for both the users BASIC program and the EEPROM data
storage area as a shared resource. The program is stored from the top of EEPROM memory
(location 255) downwards and the EEPROM data is stored in locates form the bottom (location 0)
upwards. The “M” series PICAXE chips have a limited 128 bytes of RAM which must be shared
between internal requirements, program variables (b0 to b13) and general RAM accessed with
PEEK and POKE commands.

For the larger PICAXE chips, there is sufficient flash memory to enable additional BASIC program
commands and store the users BASIC program. This allows the user the full use of the 256 bytes
of EEPROM memory purely for the users data storage. Details for some of these larger chips is
provided below.

The 18X PICAXE chip contains 7168 bytes of flash memory which is allocated as 2048 bytes for
the users program and 5120 bytes for the firmware. There are 256 bytes of EEPROM memory and
368 bytes of RAM which is distributed for internal requirements, program variables (b0 to b13) and
general RAM accessed with PEEK and POKE commands.

The 18M2 PICAXE chip contains a total of 4096 bytes of flash memory which is allocated as 2048
bytes for the users program and 2048 bytes for the firmware. There is also 384 bytes of RAM
available for internal requirements, program variables (b0 to b27) and general RAM accessed with
PEEK and POKE commands.

For the 28X1 and 40X1 PICAXE chips the flash memory totals 8096 bytes of which half (4096
bytes) is used for the users BASIC program. This leaves 4096 for the firmware which is twice the
firmware space compared to the “M” series PICAXE chips therefore enabling the inclusion of
additional commands. There is a total of 368 bytes of RAM available for internal requirements,
program variables (b0 to b27), scratchpad (128 bytes) and general RAM accessed with PEEK and
POKE commands.

For the 28X2 and 40X2 PICAXE chips the flash memory totals 32 kBytes of which half (16 kBytes)
is used for the users BASIC program as four slots each comprising 4 kBytes. There is then a

further 16 kBytes available for the firmware which is four times that provided by the X1 parts and
consequently added commands and greater flexibility of the IO is available. These X2 parts also
have more RAM available with a total of 1536 bytes which allows the provision of a larger number
of program variables (b0 to b55) and a larger scratchpad memory area (1024 bytes) and general
RAM accessed with PEEK and POKE commands.

3.0 PICAXE Program Format and Storage

Within the Programming Editor and the users computer, the users BASIC program is stored as a
simple text file with a .bas file extension/type that can be opened and edited in various other text
editor programs, such as MS Notepad.

When the BASIC program is downloaded to a PICAXE microcontroller, the Programming Editor
creates a tokenised version of the users BASIC program which is more compact and therefore
requires less program space within the PICAXE chip. This is essential when you consider that the
“M” series PICAXE chips only have a total of 256 bytes of program space.

Instead of downloading BASIC program command keywords such as READ, PAUSE, SEROUT,
i2cSLAVE, etc, as text equivalents which would require many bytes of program space for each
command, to reduced space as is common with interpreted BASIC each command/keyword is
changed to a unique token. Furthermore, math operators such as +, - , / and * are also converted
to unique tokens.

Program labels are not loaded as text strings into the PICAXE but are converted to an address and
stored in a compressed format. Likewise constants defined using SYMBOL statements are saved
directly into the program at the relevant locations as compressed values where the number of bits
relates to the number of bits needs to hold the value along with an overhead.

For computers using interpreted BASIC, the tokens typically use a full byte (8-bits) and some
extended BASIC languages may use two byte tokens. With, the reduced instructions and need to
maximise use of the available program memory space, the PICAXE system uses further
compression based on the use of 4 and 5 bit tokens within the PICAXE system.

Program data held in EEPROM and RAM is all based on byte boundaries thus data with values in
the range 0 to 255 will always occupy 1 byte (8-bits) for each byte value stored (or two bytes for a
word variable/value).

3.1 PICAXE Number Compression and Representation

As mentioned above, numbers such as constants are not stored as 8-bit values in the program
space but in a compressed format whereby the more frequently used smaller values occupy less
space. The space requirements within the PICAXE program area for numbers are defined as
follows:

Number
Value

Bits Req’d
for Number

Number Size
Bit Combination

Total Overhead
Bits Required

Total Bits
Used

0 to 1 1 %00 3 4

2 to 15 4 %01 3 7

16 to 255 8 %10 3 11

256 to 65535 16 %11 3 19

The overhead part requiring the extra 3 bits comes from a need for a bit to flag that it is a number
(and not a variable) and two more bits to indicate the “size” of the number.

Because of the way that the PICAXE program is compressed on a bit boundary, all numbers are
shuffled up with minimal leading zeros. As such they can virtually be though of as left justified. The
following table depicts how numbers are stored within the PICAXE programs

Number Representation in Program Space Number
Value

Bits Required
in Program

Number
Size bits �msbit lsbit �

0 1 %00 0 — — —
1 1 %00 1 — — —
2 4 %01 0010 — — —
3 4 %01 0011 — — —
4 4 %01 0100 — — —
5 4 %01 0101 — — —
6 4 %01 0110 — — —
7 4 %01 0111 — — —
8 4 %01 1000 — — —
9 4 %01 1001 — — —

10 4 %01 1010 — — —
11 4 %01 1011 — — —
12 4 %01 1100 — — —
13 4 %01 1101 — — —
14 4 %01 1110 — — —
15 4 %01 1111 — — —
16 8 %10 0001 0000 — —
17 8 %10 0001 0001 — —
18 8 %10 0001 0010 — —
19 8 %10 0001 0011 — —
20 8 %10 0001 0100 — —
21 8 %10 0001 0101 — —
22 8 %10 0001 0110 — —
23 8 %10 0001 0111 — —
24 8 %10 0001 1000 — —
25 8 %10 0001 1001 — —
26 8 %10 0001 1010 — —
27 8 %10 0001 1011 — —
28 8 %10 0001 1100 — —
29 8 %10 0001 1101 — —
30 8 %10 0001 1110 — —
31 8 %10 0001 1111 — —
32 8 %10 0010 0000 — —
64 8 %10 0100 0000 — —
128 8 %10 1000 0000 — —
256 16 %11 0000 0001 0000 0000
511 16 %11 0000 0001 1111 1111
512 16 %11 0000 0010 0000 0000

1024 16 %11 0000 0100 0000 0000
2048 16 %11 0000 1000 0000 0000
4096 16 %11 0001 0000 0000 0000
8192 16 %11 0010 0000 0000 0000
16384 16 %11 0100 0000 0000 0000
32768 16 %11 1000 0000 0000 0000
65535 16 %11 1111 1111 1111 1111

One thing that can be seen is that the larger a number, the more bits are needed to hold in a token.

Thus a PAUSE 260 will require 8 bit more program space than a PAUSE 255 command so it is
clear that careful use of numbers can improve/reduce program size.

Likewise the program space for the overhead in using a loop as:

FOR b0 = 1 to 16
NEXT b0

requires 4 more bits of program space than a loop using

FOR b0 = 0 to 15
NEXT b0

even though both will go through the loop structure the same number of times

As another example, the program snippet:

HIGH 7
PAUSE 100
LOW 7

requires more 6 more bits of program space than using:

HIGH 1
PAUSE 100
LOW 1

So it would seemingly be prudent to allocate the lower two input and output pins on

earlier PICAXE parts and the lower two IO pins on the later X2 and M2 parts.

3.2 PICAXE Program Compression

As discussed above, the tokens as used for BASIC program commands and math operators are
also compressed. With the compressed 4, 5 or 6 bit tokens as used for commands and math
operators, variables, labels, etc, the PICAXE systems shifts the tokens up so that there is no
unused bits and the program file is based upon on 1-bit boundaries rather than byte boundaries.

The program space requirements needed for these program parts are detailed below (based upon
the publically and readily available information):

Program Part Bits for
Token

Comment

Commands (LET, IF, HIGH, etc) 5 or 6 5 bits for M series & early chips
6 bits for X1 and later chips

Labels (after THEN, GOTO, GOSUB) 11 / 14 / 15

11 bits required for 256 byte addr.
14 bits required for 2048 byte addr.
15 bits required for 4096 byte addr.

Math operators (=, -, +, *, **, /, //, etc) 4 or 5 4 bits for pre- X1 parts (15 functions)
5 bits for X1/X2 parts (30/32 funct’n)

Variables (bit0 - bit7, b0 – b13, w0 – w6) 6 to 8 6 bits for M series & early chips
7 bits for X1 parts
8 bits for X2 parts

Bit “flags” (indicate when something
does/doesn’t follow – eg comma)

1

Some program commands apparently just happen to also use additional bits but no specific details
have been published/posted.

From Clive Seager as quoted on the forum by forum member Beaniebots with respect to the X1
parts:

“ Programs will be longer. This is because each command is now 6 bits long (was 5) to
allow support of all the extra commands and similarly the variables are also a bit longer.
This is why we say ~600 lines for 28X and ~1000 (not 1200!) for the 28X1. However there
is also some better compression on some commands to compensate” .

From looking at early versions of the PICAXE manuals, there were only Math related 15
commands including the equals (=) so that these could be contained within 4 bits. Newer PICAXE
chips support more twice the number of commands which requires a minimum of 5 bits. To cater
for this the extra bit is placed at the front/left of the token and for the existing tokens the extra bit
has a value of “0”. For the newer X1/X2 commands in many cases the msb is a “1” but for the
Unary math functions the msb may be a “0” or a “1” and discrimination from other tokens is achieve
with other bits/flags.

These math operators are followed by a bit flag where “0” indicate the last operation and “1”
indicates a further following operation.

3.3 Variable Tokens
As mentioned in section 3.2, the number of bits used to represent a variable has increased as
developments with the PICAXE chip range have occurred. This has been necessary to provide
“space” for the additional variables. The following table based upon current PICAXE manual data
shows how the number of variables has increased across the PICAXE range over time.

Variable Type PICAXE type
Bit Byte Word

“straight”, A, X
and M parts

bit0 to bit15 b0 to b13 w0 to w6

X1 parts bit0 to bit31 b0 to b27 w0 to w6
M2 Parts bit0 to bit31 b0 to b27 w0 to w13
X2 Parts bit0 to bit31 b0 to b55 w0 to w27

As the number of variables has increased/doubled so the number of bits to represent a variable
has also increased by one bit for each doubling of the quantity of variables.

Although a given number of bits can represent a specific number of values, for example 8 bits can
hold a value from 0 to 255, there is also a need to incorporate some information to indicate
whether the program token represents a bit, byte or word variable. This is part of the reason why
there are 14, 28 and 56 byte variables rather than the possibly expected quantities of 16, 32 or 64
respectively.

My understanding is that for the X2 parts, the variable tokens all occupy 8 bits of program space
and can be defined by the bit patterns given in the following tables. Note that these are my
interpretation and may be incorrect – provided only for concept and I take no responsibility for
errors or omissions.

3.3.1 X2 Bit Variables

P.E. Variable
Name

Program
Space Token

 P.E. Variable
Name

Program
Space Token

Bit0 1000 0000 Bit16 1001 0000
Bit1 1000 0001 Bit17 1001 0001
Bit2 1000 0010 Bit18 1001 0010
Bit3 1000 0011 Bit19 1001 0011
Bit4 1000 0100 Bit20 1001 0100
Bit5 1000 0101 Bit21 1001 0101
Bit6 1000 0110 Bit22 1001 0110
Bit7 1000 0111 Bit23 1001 0111
Bit8 1000 1000 Bit24 1001 1000
Bit9 1000 1001 Bit25 1001 1001
Bit10 1000 1010 Bit26 1001 1010
Bit11 1000 1011 Bit27 1001 1011
Bit12 1000 1100 Bit28 1001 1100
Bit13 1000 1101 Bit29 1001 1101
Bit14 1000 1110 Bit30 1001 1110
Bit15 1000 1111 Bit31 1001 1111

3.3.2 X2 Byte Variables

P.E. Variable
Name

Program
Space Token

 P.E. Variable
Name

Program
Space Token

B0 0010 0010 B28 1010 0010
B1 0010 0011 B29 1010 0011
B2 0010 0100 B30 1010 0100
B3 0010 0101 B31 1010 0101
B4 0010 0110 B32 1010 0110
B5 0010 0111 B33 1010 0111
B6 0010 1000 B34 1010 1000
B7 0010 1001 B35 1010 1001
B8 0010 1010 B36 1010 1010
B9 0010 1011 B37 1010 1011
B10 0010 1100 B38 1010 1100
B11 0010 1101 B39 1010 1101
B12 0010 1110 B40 1010 1110
B13 0010 1111 B41 1010 1111
B14 0110 0010 B42 1110 0010
B15 0110 0011 B43 1110 0011
B16 0110 0100 B44 1110 0100
B17 0110 0101 B45 1110 0101
B18 0110 0110 B46 1110 0110
B19 0110 0111 B47 1110 0111
B20 0110 1000 B48 1110 1000
B21 0110 1001 B49 1110 1001
B22 0110 1010 B50 1110 1010
B23 0110 1011 B51 1110 1011
B24 0110 1100 B52 1110 1100
B25 0110 1101 B53 1110 1101
B26 0110 1110 B54 1110 1110
B27 0110 1111 B55 1110 1111

3.3.3 X2 Word Variables

P.E. Variable
Name

Program
Space Token

 P.E. Variable
Name

Program
Space Token

W0 0011 0010 W14 1011 0010
W1 0011 0100 W15 1011 0100
W2 0011 0110 W16 1011 0110
W3 0011 1000 W17 1011 1000
W4 0011 1010 W18 1011 1010
W5 0011 1100 W19 1011 1100
W6 0011 1110 W20 1011 1110
W7 0111 0010 W21 1111 0010
W8 0111 0100 W22 1111 0100
W9 0111 0110 W23 1111 0110
W10 0111 1000 W24 1111 1000
W11 0111 1010 W25 1111 1010
W12 0111 1100 W26 1111 1100
W13 0111 1110 W27 1111 1110

3.3.4 Other X2 Variables

There are a number of other variables and while the following list may still be incomplete it
provides the program space token for some of those additional variables.

P.E. Variable
Name

Program
Space Token

 P.E. Variable
Name

Program
Space Token

pinsA 1010 0000 s_w0 0011 0001
pinsB 0010 0000 s_w1 0011 0011
pinsC 0110 0000 timer3 0011 0111
pinsD 1110 0000 compvalue 0011 1001
dirsA 1010 0001 hserptr 0011 1011
dirsB 0010 0001 hi2clast 0011 1101
dirsC 0110 0001 timer 0011 1111
dirsD 1110 0001 ptr 1011 1101
outpinsA 1111 0101 adcsetup 1011 1111
outpinsB 1111 0001 flags 1111 1001
outpinsC 1111 0011 bptr 1111 1011
outpinsD 1111 0111

3.3.5 X2 Variable Summary

For other PICAXE parts, the program tokens may differ but the concept is the same as provided in
the above tables.

From the above table, it an be seen that bits 4 and 5 in each token are unique to the variable type.
So a program token with the format;

- %xx00 xxxx or %xx01 xxxx represents a bit variable,
- %xx10 xxxx represents a byte variable, and
- %xx11 xxxx represents a word variable.

Note also that:

- Both byte and word tokens commence with %0010 as the lower nybble
- Word and byte tokens are aligned for the lower nybble.

For the latter point, if we consider say w5 which uses the same memory locations as bytes b11:b10
The lower nybble for w5 is 1100 which is the same as the lower nybble token for b10.

From the information provided in this section, it is obvious that using smaller numeric values for the
data will save space, however there is no space savings gained with respect to the actual program
tokens for the variable names.

As mentioned earlier, the information pertaining to the numeric values in section 3.1 and the X2
series program variable tokens in section 3.3 are based upon my investigations over a couple of
hours using nothing more than a PICAXE chip and the Rev Ed Programming Editor (V5.3.4)
software without any “skimming devices” or other electronic tools.

3.4 GOSUB Command Overheads

When a BASIC program uses a GOSUB command to perform the code within the specified
subroutine, the PICAXE must have a means to identify the point in the program from which the
branch to the GOSUB occurred to enable the program execution to ultimately RETURN to that
point.

If the PICAXE firmware was to store the actual address of the address token after a GOSUB
command, for the “M” series parts this would require saving 11 bits onto the “return” stack. For a
four deep stack as available for the “M” PICAXE parts, this would require 44 bits which needs a
total of 6 bytes. When one considers that the “M” series PICAXE parts only have 128 bytes of RAM
registers of which 48 are made available for the PICAXE user, the 6 bytes is a lot compared to the
remaining RAM available for all of the PICAXE internal functions.

Even for the X1 and X2 parts which allow an eight deep stack, that would equate to 15 bytes of
RAM (8 addresses each of 15 bits) for the return stack from a total of 368 bytes of RAM, after 128
bytes is allocated for the scratchpad and a further 95 bytes made available to the users program.

To reduce the stack size requirements, every GOSUB is assigned a number (0..15 for “M” parts
and 0..255 for larger PICAXE chips). It is this number which is pushed to the stack. That number
only requires four bits for the “M” series PICAXE chips so the stack is reduced to just two bytes of
RAM in total. For the larger parts with a stack depth of eight that requires just eight bytes of RAM
in total. That gives a good saving in scare RAM memory resources.

When a RETURN is executed at the completion of the subroutine, it pops the subroutine’s 4-bit or
8-bit number back off the stack which is the equivalent to “jump to the nth GOTO address in a look-
up table to determine the return address. The Return address lookup table is held in the program
memory of which there is far more than there is RAM. The address in the look-up table takes the
program execution back to the command immediately after the calling GOSUB.

4.0 A Brief Look at Program Optimisation
On the “X” parts (eg 18X), selecting 256 GOSUB’s as opposed to 16 GOSUB’s in the
Programming Editor (View/Options) will use more program space so always select the 16
GOSUBs options unless you really do need more GOSUB’s.

The LOOKUP and LOOKDOWN commands are particularly memory ‘hungry’ as each 8-bit value
(ie values are 16 to 255) requires 11 bits for the value and one more bit for the separator bit flag
resulting in 12 bits per 8-bit value.

For example the program line:

LOOKUP b5, (100, 150, 200), b6

Based on the tables above, and considering that the bit usage given below may not be perfectly
accurate it does give a reasonable idea, the anticipated total required program space bits are as
follows:

Line Part Details ‘M’ series
Bits Used

Command LOOKUP 5
Variable B5 6
Separator/More Flag , 1
Bracket (0
Value 100 11
Separator/More Flag , 1
Value 150 11
Separator/More Flag , 1
Value 200 11
Bracket) 0
Separator/More Flag , 1
Variable B6 6

Total Program Space require = 54 bits

Performing a Syntax check in the P.E. for both an 08M and 40X1 indicates 10 bytes used. If we
deduct the 3 bytes for an empty program we have 7 bytes which equates to a maximum of 7 x 8
bits = 56 bits so the above calculation is roughly on target.
If one of the values in changed to greater than 255 then the P.E. syntax check shows one extra
byte required which is as expected.
Adding one extra value less than 256 and performing a P.E> Syntax check shows 12 bytes used
and as we have introduced 11 bits for the extra value plus 1 bit for the “More flag” the values still
appear to be relatively in order.

By comparison, using the following program snippet to achieve the same thing:

EEPROM 0,(100, 150, 200)
READ b5, b6

Line Part Details ‘M’Series

Program Bits Used
Larger PICAXE

 Program Bits Used
PE Directive EEPROM 0 (PE directive only) 0 (PE directive only)
Value 0 0 (Part of PE directive) 0 (separate EEPROM area)
Separator/More Flag , 0 (Part of PE directive) 0 (separate EEPROM area)
Bracket (0 (Part of PE directive0 0 (Part of PE directive
Value 100 8 (EEPROM always 8 bits) 0 (separate EEPROM area)
Value 150 8 0
Value 200 8 0
Bracket) 0 (Part of PE directive 0 (Part of PE directive)
Command READ 5 6 (based on past forum post)
Variable b5 6 7 for X1? and 8 for X2
Separator/More Flag , 1 1
Variable b6 6 6

Total Program Space require = 42 bits 20 bits (X1) or 21 bits (X2)

So seemingly with the example above, using the EEPROM and READ commands saved 22% with
the “M” series chip and a whopping 66% for the larger (X, X1 or X2) PICAXE chip.

Using the P.E. Syntax check indicates that for the 08M a total of 10 bytes are used (= 7 after
allowing for 3 bytes for the empty program) and for the 40X1 a total of 6 bytes are used (= 3 bytes
after allowing for 3 bytes for the empty program).

Note that while the earlier PICAXE chips used 3 bytes for an ‘END’ marker in an empty program,
for the X2 parts, this has been reduced to 2 bytes (as identified with the PE syntax checker).

While the 3 byte space requirement falls within the anticipated space for the 40X1 version (as 20
bits = 2.5 bytes) the requirement for 7 bytes for the 08M version is roughly 1 bytes greater than
anticipated (since 42 bits = 5.25 bytes which would report as 6 bytes). Discrepancies aside
however, the program space requirements are generally of the right order of magnitude.

Another interesting comparison, albeit only available for the X1 and X2 parts, is between the NOT
and INV commands. Consider the following examples:

 b0 = NOT b3 ; available for all PICAXE chips according to recent manuals
but not mentioned in earlier (eg V5.2) versions of the manuals.

and
 b1 = INV b3 ; this command only exits for X1 and X2 parts.

Both commands achieve the same end result in that they bit-wise invert the individual bits from the
byte value. However the NOT command uses three more bytes of program space than the INV
command. This suggests that the NOT command may be some form of “maco” since it needs 24
bits (3 bytes) more program space.

In summary, while the use of EEPROM memory, particularly for the larger PICAXE parts can save
program space, there is still an advantage that the LOOKUP/LOOKDOWN commands has over the
EEPROM command in that variables can be used to return data, and data can have a value
greater than 255. LOOKUP allows the effective creation of an array of bit/byte/word variables.

By contrast, using EEPROM memory with the READ command has the advantage that all data
uses exactly 8-bits, and at run-time the Firmware doesn't have to step through the LOOKUP list to
find the data needed and finally jump to the end of the LOOKUP command to continue with the
next program statement. As a consequence, using EEPROM memory and the READ command is
much quicker. There's also the advantage as stated that the EEPROM data is often held
separately from program code, which also has the advantage of saving program memory space.

Some optimisations are not immediately obvious as has been highlighted on the PICAXE forum.

 LET b0 = b0 + b1 – this uses ~3 bytes with a 40X1 chip and 4 bytes with a X2 chip.
 LET b0 = b1 + b0 – this uses ~5 bytes with a 40X1 chip and 6 bytes with a X2 chip.

If you try the above, keep in mind that the P.E adds an “invisible” END command (3 bytes on pre-
X2 parts and 2 bytes on X2 parts) to any program, so you will see 6 and 8 bytes respectively for
the two above program lines with, for example, an X1 chip.

Not only does the first example save some program space, but as can be seen from the timing
examples in section 5.0, in the case where the variable for the result is the first variable after the
“=” results in approximately a one-third reduction in the time to perform the calculation.

The left to right math equation computation means that incorporating a previous result into the
same variable as part of a more complex calculation may require the initial variable be appended
at the end akin to the second case above. However it does indicate that one should consider how
to undertake the math equations where possible.

As the BASIC program tokens are not byte-sized, and because the Programming Editor only
reports the size of program in bytes it is not clear exactly how much space is used when adding,
changing or deleting a command. A two byte long program may have had 9 bits to 16 bits used,
adding another command may or may not show up as an increase in size. Program optimisation is
therefore something of a “Black Art” which can be a little hit and miss, and not helped by the fact
that you are trying to save bits, but only get told how many bytes or part bytes you've used. A one
bit increase can appear as a one byte increase and a seven bit reduction may not show at all.

5.0 Command Timing
Any attempt to rely on timing for a particular PICAXE command is fraught with difficulties.

For example the simple empty program loop:

 FOR b0 = 0 TO 65525
 NEXT b0

Was measure to take approx 65 seconds using an 08M but approx 75 seconds using a 40X1 with
both PICAXE chips running at 4 MHz using the internal resonator.

The above timing difference may be attributed in part to resonator variance/tolerance and in part to
the placement of the tokens crossing byte boundaries and requiring additional time to “extract” the
tokens and execute the program. A smaller part of the time difference could even be attributed to
the 08M program running in EEPROM memory while the 40X1 program is stored in flash memory
which is marginally slower to access.

Not withstanding the variances that will occur between the various PICAXE chips and the position
of the program tokens relative to byte boundaries, the following information is provided as a rough
guide to program command execution times. The data is provided here for completeness of
providing as much detail about the PICAXE program space and time as can readily be found or
determined.

The timing data for the 28X chip is based on past data posted by BeanieBots on the PICAXE forum
using a second 28X to record the time intervals. The data for the old 08 chips was posted by hippy
on the PICAXE forum. The remaining timing data was measure by the author (Westaust55) using a
PICAXE 40X1 (firmware VB.1)

The test result below were obtained using two PICAXE chips running at the default resonator
speed. The first PICAXE was set up to measure the duration using the PULSIN command and
output the timing results to an LCD in units of 10 usec.

The second PICAXE had the following program:

Main:
 High 1
 'command under test
 Low 1
 Goto Main

Most of the commands were tested with little variation noticed between their timings so I will only
mention the different ones. I also added a line before and after the code to see if program position
had much effect. There is about a 2% variation depending on code position.
The numbers stated are those as read from the LCD so it is up to you to interpret them.

Note that the test results in the table below are adjusted to correct for the fact that the PULSIN
command registers in 10 microsecond increments with a 4 MHz clock speed.

PICAXE Chip ==> 08 08M 18X 18M2 28X 28X1 28X2 28X2

Firmware Ver 4.3 9.2 8.8 2.A 7.1 A.2 B.1 B.1

Clock Speed 4 MHz 4 MHz 4 MHz 4 MHz 4 MHz 4 MHz 4 MHz 8 MHz

Source Hippy WA55 WA55 WA55 Beaniebots WA55 WA55 WA55
Command

Duration (usec) (usec) (usec) (usec) (usec) (usec) (usec) (usec)

PAUSE 1 1,250 1,220 1,290 1,450 1,240 2,320 1,160

PAUSE 15 15,320 14,780 15,360 14,770 3,0310 15,140

PAUSE 255 256,110 246,830 255,820 245,920 509,220 254,400

PAUSE 256 257,140 247,900 257,120 246,970 511,290 255,460

GOTO 266 280 330 810 390 470 230

GOSUB 330

RETURN 510

900 1,260 3,150 1,310 1,490 1,730 860

HIGH 0 230 250 250 310 520 280 390 190

HIGH 4 255 290 270 340 320 440 220

LOW 0 226 250 250 310 520 280 380 190

LOW 4 254 290 270 340 320 440 220

IF b0=1 THEN 550 600 710 840 690 810 400

IF b0=255 THEN 620 680 780 920 750 910 450

IF b0 = b1 THEN 520 680 1,230 880 800 960 480

IF w0 = w1 THEN 540 700 1,260 900 820 990 490
for the 28X other IF…THEN tests/comparisons similar test results were recorded (as advise by BB)

b0 = 0 329 360 350 450 420 510 250

b0 = 2 355 380 390 470 450 540 260

b0 = 16 397 430 430 510 510 580 290

w0 = $FFFF 480 540 530 640 610 720 360

b0 = 0 + 0 629 670 680 810 800 970 480

b0 = 0 - 0 616 660 670 800 790 950 470

b0 = 0 * 1 777 830 840 970 960 1,120 560

w0 = $FFFF * $FFFF 1,156 1,250 1,290 1,450 1,420 1,620 810

w0=w0 * w0 (with w0 = 0) 645 690 680 840 810 970 480

w0=w0*w0 (with w0 = $FFFF) 650 690 690 850 810 970 480

b1 = b1 + b2 500 500 650 1,000 630 770 380

b1 = b2 + b1 760 770 960 950 1,140 570

PEEK 0, b0 360 360 540 630 490 580 290

PEEK 255, b0 440 430 610 680 570 650 320

POKE $50, b0 440 440 590 700 540 630 310

RANDOM b0 270 250 350 500 350 410 210

READ 0, b0 500 550 520 500 580 290
READADC 0, b0 (pin1 for 08M) 500 500 690 680 950 1,050 520
READADC10 0, w0 (pin1 for 08M) 520 520 700 680 960 1,070 530

TOGGLE 0 227 250 250 360 290 380 190

TOGGLE 2 290 270 420 330 440 210

TOGGLE 4 254 290 270 420 520 330 440 220

WRITE 0, b0 4,290 5,390 3,210 5,090 4,240 3,550 3,090

SEROUT 0, N2400, (“”) 5,210 5,150 5,380 5,370 5,190 5,180 4,890

SEROUT 0, N2400, (“AAA”) 15,160 15,010 15,610 15,100 15,030 14,790 14,300
REM or #REM / #ENDREM 0 0 0 250 0 0 0

DEBUG 373,700 372,280 127,450 327,200 150,010 183,980 183,810

The increased speed through use of pins 0 and 1 versus use of pins 2 and up (due to token size
differences) can be clearly seen, as can the token-sizing effects can also when it comes to
variable assignment .

The 'cost' of mathematical operations is quite interesting. Adding +0 adds 300 usec and the -0
adds 287 usec. Looking at the effect of math calculations really highlights how hard it is to predict
timing because it can (but not always) be greatly affected by what numbers are being used.

As can also be seen from the tabulated data, the newer M2 and X2 parts (due to greater
complexity, flexibility and other firmware matters to keep things ticking along including the need to
process more complicated command tokens, check more things like interrupts, and

perform the mapping of port data to actual I/O pins), takes on average approximately 30%
longer at the same clock speed to perform the same command as the “M” “X” or “X1” series parts.

- -

Some timing comparisons made using an oscilloscope by forum member MartinM57 are as
follows:

(see forum thread: http://www.picaxeforum.co.uk/showthread.php?t=13262)

20X2 Program loop: 08M Program loop:

 Setfreq m64 Setfreq m8
 DO DO
 Toggle B.0 Toggle 1

 Toggle B.0 Toggle 1
 ; or other command
 ; as per table below

 LOOP LOOP

PICAXE Chip ==> 08M 20X2

Firmware Ver n/a n/a

Clock Speed 8 MHz 64 MHz

Source MartinM57 MartinM57

Command

Duration (usec) (usec)

Toggle B.0 (twice) 125.8 31.78

High B.0 : Low B.0 31.79

pinB.0 = 0 : pinB.0=1 34.65

- -

Some further speed test data previously provided by PICAXE forum member BeanieBots is as
follows using a now superseded PICAXE 18 back in 2003:

(see: http://www.picaxeforum.co.uk/showthread.php?t=618)

Loop1:

 pins=pins^$FF

 Goto Loop1

f=557.2 Hz

t = 1,795 usec per loop

Loop1:

 High 1

 Low 1

 Goto Loop1

f=1.143 kHz

t= 875 usec per loop

Loop1:

 For w0=0 to 65535

 High 1

 Low 1

 Next w0

 Goto Loop1

f=617.4Hz

t= 1,620 usec per FOR…NEXT loop

Loop1:

 For w0=0 to 65535

 High 1

 b3 = b4

 Low 1

 Next w0

 Goto Loop1

f=464.0 Hz

t= 2,155 usec per FOR…NEXT loop

Loop1:

 For w0=0 to 65535

 High 1

 Readadc10 0, w2

 Low 1

 Next w0

 Goto Loop1

f=478.3 Hz

t= 2,091 usec per FOR…NEXT loop

These tests were done at an ambient of 18C.

Touching the PIC with a finger gave a rapid 2% rise in frequency which slowly fell after

removing the finger so I assume the change is temperature related rather than capacitive

